# 甲苯和 1, 3, 5<sup>-</sup>三甲苯在不同沸石分子筛上 的烷基转移反应<sup>\*</sup>

曾海生 关乃佳(南开大学化学系新催化材料科学研究所, 天津, 300071)

刘述全 (南开大学催化剂厂,天津,300071)

研究了甲苯和 1, 3, 5 - 三甲苯在 HY, H $\beta$  HZSM - 5(不同硅铝比)等沸石分子筛上烷基转移生成二甲苯的 活性规律以及二甲苯的选择性,发现 H $\beta$ 沸石对该反应有较好的活性和稳定性,对 H $\beta$ 沸石的反应条件进行优 化,探讨了反应温度,进料空速,原料配比以及载气流速对甲苯和 1, 3, 5 - 三甲苯的转化率和二甲苯选择性的 影响,并结合吡啶吸附 R 光谱数据将分子筛表面酸性与反应性能进行关联讨论。

关键词: 甲苯 1,3,5-三甲苯 烷基转移 沸石分子筛

多烷基苯的烷基转移反应是一类非常重要的 反应,几乎所有的芳烃加工工业都与之相关。苯的 烷基化衍生物首先应数甲苯,它大量存在于催化 重整产物中,是催化重整和高温裂解汽油所得芳 烃产物的主要成分之一,随着苯产量的增长,甲苯 产量也相应提高, 然而, 甲苯的用途远不如苯和二 甲苯大。目前,工业上都采用混合二甲苯异构化或 与C。芳烃歧化反应的方法来生产对二甲苯。为了 充分利用这一资源,扩大苯和对二甲苯的来源,研 究甲苯代替苯合成化工产品的新技术, 如甲苯甲 基化(烷基化),甲苯歧化,以及甲苯和C,芳烃烷 基转移反应等方法,研究开发新型烷基转移反应 催化剂是一个既有理论意义又有工业实用价值的 课题。由于1,3,5-三甲苯在三甲苯混合物中含量 较大,本文探讨了1,3,5-三甲苯和甲苯在不同沸 石分子筛催化剂上的反应行为,取得了一系列重 要结果。

# 1 实验部分

## 1.1 催化剂活性评价方法

反应器为∅6 mm × 20 m 的不锈钢管管式 固定床反应器,采用连续流动式平流泵进料。操作 方法如下:在一定长度的石英管的支撑下放入玻 璃棉,调到恒温区,放入一定量的 20~ 30 目催化 剂,在上面覆盖一层玻璃棉,通入一定流速的载气 N<sub>2</sub>,加热到 450 活化 1 h,再调到指定温度下进 料反应。1 h 后开始取样, 以后每间隔 0 5 h 接样 分析。

#### 12 产物分析

用山东滕州产 SP - 502 气相色谱仪分析产 物。色谱柱为:填充柱 I:PEG 20000[10% (w)], 4mm × 3m。填充柱 II:邻苯二甲酸二癸酯[3 5% (w)]+ 有机皂土[4 5% (w)]+ 白色担体,4mm × 3m。

分析条件: 热导池检测器 453 K, 气化室 453 K, 柱室 363 K, 桥电流 150 mA, 衰减 2。

#### 13 催化剂的制备

在 N a $\beta$ 分子筛中加入 1 M NH4NO<sub>3</sub> 溶液, 363 K 搅拌交换 4 次, 交换后过滤, 393 K 下烘干 4 h, 773 K 下焙烧 5 h, 制成氢型分子筛备用。取 定量化合物溶于蒸馏水中, 加入到 H $\beta$ 分子筛中 浸渍 5 h, 393 K 下烘干 12 h, 823 K 下焙烧 5 h, 然后压片破碎至 20~ 30 目待用。催化剂编号为 M<sup>-</sup>C<sup>-</sup>H $\beta$ 其中M 为改性离子, C 为改性组分的 重量百分含量。

## 1.4 催化剂酸性的表征

吡啶吸附红外光谱法(ℝ)采用PERKN<sup>-</sup>

\* 国家自然科学基金重点项目资助课题。

收稿日期: 1993 <sup>-</sup> 03 <sup>-</sup> 31; 修改稿收到日期: 2000 <sup>-</sup> 03 <sup>-</sup> 06, 作者简介: 曾海生 27岁, 硕士, 催化专业, 主要从事多相催 化的研究工作, 已发表论文 5 篇。

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

ELM ER -684 型红外光谱仪。首先将所测样品在 393 K 下烘干, 研细, 在  $12 \text{ T/cm}^2$  下压片成型, 装 入样品池待测。体系先在 673 K, 0 53 Pa 下加热 抽空 2 h, 然后降至室温吸附吡啶 20 m in, 升温至 473 K, 抽空 30 m in, 脱除物理吸附的吡啶, 然后 降到室温摄谱。 2 结果与讨论

2 1 不同沸石上甲苯和 1, 3, 5 三甲苯的反应行 为

甲苯和 1, 3, 5 三甲苯在 H $\beta$  HY 和不同硅铝 比 HZSM <sup>-</sup> 5 上的转化率以及产物选择性随时间 变化见表 1。

| 表 1     | 甲苯和13  | 5.5 三甲苯在 HR 1 | IV 和不同硅铝比 HZSM | -5催化剂上转化率随时间 | 副的变化 |
|---------|--------|---------------|----------------|--------------|------|
| · • • • | = +, e | ~~            |                |              |      |

| $\begin{array}{c} \mu_{L} \mu_{L}$ | 反负型                       |             |        | 60        |              |      |      |       | 90        |             |      |       |      | 150   |             |       | 21    | 0    | 27    | 70    | 33   | 30   | 36   | 50    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|--------|-----------|--------------|------|------|-------|-----------|-------------|------|-------|------|-------|-------------|-------|-------|------|-------|-------|------|------|------|-------|
| 123 $36$ $30$ $123$ $36$ $30$ $12$ $123$ $36$ $30$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 间/h                       | Нβ          | ΗY     | <u>HZ</u> | <u>M − 4</u> | 5*   | нβ   | HY    | <u>HZ</u> | <u>SM</u> - | 5    | нβ    | HY.  | HZ    | <u>SM -</u> | 5     | нβ    | HY   | нβ    | НҮ    | Нß   | НҮ   | нβ   | ΗY    |
| 甲苯       33 5 40 7 9 7 14 0 14 30 9 37.9 8 3 12 2 0 7 31 3 34 1 6 2 14 9 0 3 35 0 28 5 31 1 28 0 29 3 25 8 29 6         1.3,5 <sup>-</sup> 88 4 84 5 61 2 69 0 5 8 89 3 86 0 55 8 61 7 3 9 89 3 85 2 44 1 55 6 3 3 88 2 85 3 87 4 88 7 86 6 88 8         产物选择性、% (mol) $\overline{x}$ 7.3 16 7 90 9 6 12 1 5 4 12 1 9 0 11 1 10 5 6 5 9 6 9 9 16 0 5 6 11 2 67 7 2 7 0 6 2 6 8 7 0         二甲苯       76 5 69 5 31 6 39 3 30 7 74 8 72 4 28 8 33 9 25 4 75 6 74 7 25 1 35 1 17.8 65 4 74 2 69 2 74 1 75 6 73 2 73 0         1.2,3 <sup>-</sup> 1.5 1 3 6.8 57 - 18 16 6 1 6 0 - 17 1 6 49 47 - 16 2 0 2 2 2 0 1.9 2 2 1.8         1.2,3 <sup>-</sup> 1.6 10 9 52 6 42 9 50 1 16 3 11.9 56 2 48 2 56 4 13 8 12 6 60 0 43 5 67 4 11.9 15 3 14 0 15 1 14 7 16 8 14 3         四甲苯       0.4 0.8 - 19 - 07 0.9 - 03 - 08 11 0.8 15 11 1 4 14 16 14         二甲苯       1.2 1 2.4 23 7 24 4 22 7 23 4 23 1 23 2 22 6 22 6 22 7 24 2 32 2 23 22 8 23 8 24 9 23 2 26 6 23 7 23 2         第二甲苯       1.2 1 2.4 23 7 24 4 22 7 23 4 23 1 23 2 22 6 22 6 22 7 24 2 23 2 24 5 30 52 9 52 1 53 0 53 0 52 9 52 9 52 7         对二甲苯       2.4 0 24 0 24 2 24 0 23 5 24 2 23 5 24 4 24 3 24 1 24 2 4 1 24 9 24 4 24 7 24 3 2 4 1 22 1 22 8 24 5 2 5 5 3 3 53 2 5 2 5 2 5 2 5 2 5 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 转化率.                      | % (mo       | o 1)   | _23       | 28           | 30   |      |       | 23        | 20          | 30   |       |      | 23    | 20          | 50    | r     |      | ٢     | J     | r    |      | ٢    |       |
| 1.3.5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 甲苯                        | 33 5        | 40 7   | 9.7       | 14 0         | 1.4  | 30.9 | 37.9  | 83        | 12 2        | 0 7  | 31. 3 | 34 1 | 62    | 14 9        | 03    | 35.0  | 28 5 | 31. 1 | 29. 0 | 29.3 | 25 8 | 29.6 | 20 2  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,3,5 <sup>-</sup><br>三甲苯 | 88 4        | 84 5   | 61. 2     | 69.0         | 5.8  | 89.3 | 86 0  | 55 8      | 61.7        | 39   | 89.3  | 85.2 | 44.1  | 55 6        | 33    | 88 2  | 85 3 | 85.3  | 87.4  | 88 7 | 86 6 | 88 8 | 85 4  |
| 本       7.3       16 7       9 0       9 6       1 2 1       5 4       12 1       9 0       11 1       10 5       6 5       9 6       9 9       16 0       5 6       11 1       10 5       6 5       9 6       9 9       16 0       5 6       11 2       6 7       7 2       7 0       6 2       6 7       7 2       7 0       6 2       6 7       7 2       7 0       6 2       6 7       7 2       7 0       6 2       6 7       7 2       7 0       6 2       6 7       7 2       7 0       6 2       6 7       7 2       7 0       6 2       6 7       7 2       7 0       6 2       6 7       7 3       6 7       7 3       7 3       7 3         12 3 7       1 5       1 3       6 8       5 7       -       1 8       1 6       6 1       6 0       -       1 7       1 6       4 9       4 7       -       1 6       2 0       2 0       1 9       2 0       1 9       2 0       1 9       2 0       1 9       2 0       1 9       2 0       1 9       2 0       1 9       1 1       1 0       1 0       1 0       1 0       1 0       1 0       1 0 <th1 0<="" th="">       1 0       1 0</th1>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 产物选择                      | 聲性,%        | i (mo  | 1)        |              |      |      |       |           |             |      |       |      |       |             |       |       |      |       |       |      |      |      |       |
| 二甲苯 76 5 69 5 31 6 39 3 30 7 74 8 72 4 28 8 33 9 25 4 75 6 74 7 25 1 35 1 17.8 65 4 74 2 69 2 74 1 75 6 73 2 73 0<br>1 2.3 <sup>-</sup><br>三甲苯 1 5 1 3 6 8 5 7 - 1 8 1 6 6 1 6 0 - 1 7 1 6 4 9 4 7 - 1 6 2 0 2 2 2 0 1 9 2 2 1 8<br>1.2,4 <sup>-</sup><br>三甲苯 1 3 6 10 9 52 6 42 9 50 1 1 6 3 11 9 56 2 48 2 56 4 13 8 12 6 60 0 43 5 67.4 11 9 15 3 14 0 15 1 14 7 16 8 14 3<br>四甲苯 0 4 0 8 - 1 9 - 0 7 0 9 - 0 3 - 0 8 1 1 0 0 8 1 5 1 1 1 4 1 4 1 4 1 6 1 4<br>二甲苯异构体.% (mol) 第二甲苯 23 1 22 1 23 4 23 7 24 4 22 7 23 4 23 1 23 2 26 22 6 22 6 22 7 24 2 23 2 28 23 8 24 9 23 2 26 6 23 7 23 2<br>间二甲苯 52 9 53 9 52 4 52 3 52 1 53 1 53 1 52 4 52 5 53 3 53 2 51 9 52 4 53 0 52 9 52 1 53 0 53 0 52 9 52 9 52 7<br>对二甲苯 24 0 24 0 24 0 24 2 24 0 23 5 24 2 23 5 24 4 24 3 24 1 24 2 24 1 24 9 24 4 24 7 24 3 24 1 22 1 22 8 24 5 24 4 24 1<br>反应的选择性.% 甲苯-脱烷 0 42 1 28 1 60 1 38 2 63 0 31 0 81 1 81 1 95 2 83 0 45 0 60 2 58 3 37 1 85 0 84 0 41 0 47 0 42 0 36 0 42 0 43 1,3.5 <sup>-</sup> 甲苯-脱烷 0 42 1 28 1 60 1 38 2 63 0 31 0 81 1 81 1 95 2 83 0 45 0 60 0 5 - 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 苯                         | 7.3         | 16 7   | 9.0       | 9.6          | 12 1 | 54   | 12 1  | 9.0       | 11. 1       | 10 5 | 65    | 9.6  | 9.9   | 16 0        | 56    | 11. 2 | 67   | 7.2   | 7.0   | 62   | 68   | 7.0  | 49    |
| 12.3-       15       13       6.8       5.7       -       18       16       6.1       6.0       -       1.7       1.6       4.9       4.7       -       1.6       2.0       2.2       2.0       1.9       2.2       1.8         1.2.47       13.6       10.9       52.6       42.9       50.1       16.3       11.9       56.2       48.2       56.4       13.8       12.6       60.0       43.5       67.4       11.9       15.3       1.4       1.4       1.4       1.6       1.4         四甲苯       0.4       0.8       -       1.9       -       0.7       0.9       -       0.8       1.1       -       -       0.8       1.5       1.1       1.4       1.4       1.6       1.4         四甲苯       0.4       0.8       -       1.9       -       0.7       0.9       -       0.8       1.1       -       -       0.8       1.5       1.1       1.4       1.4       1.6       1.4         □       1.5       1.3       1.53       1.53       1.52       2.6       2.2       7.24       2.3       2.4       2.3       2.4       2.4       2.4       2.4       2.4 </td <td>二甲苯</td> <td>76 5</td> <td>69.5</td> <td>31. 6</td> <td>39.3</td> <td>30 7</td> <td>74 8</td> <td>72 4</td> <td>28 8</td> <td>33 9</td> <td>25.4</td> <td>75 6</td> <td>74 7</td> <td>25. 1</td> <td>35 1</td> <td>17.8</td> <td>65.4</td> <td>74 2</td> <td>69.2</td> <td>74.1</td> <td>75 6</td> <td>73 2</td> <td>73 0</td> <td>67. 3</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 二甲苯                       | 76 5        | 69.5   | 31. 6     | 39.3         | 30 7 | 74 8 | 72 4  | 28 8      | 33 9        | 25.4 | 75 6  | 74 7 | 25. 1 | 35 1        | 17.8  | 65.4  | 74 2 | 69.2  | 74.1  | 75 6 | 73 2 | 73 0 | 67. 3 |
| 12.4-       13 6       10 9       52 6       42 9       50 1       16 3       11 9       56 2       48 2       56 4       13 8       12 6       60 0       43 5       67.4       11 9       15 3       14 0       15 1       14 7       16 8       14 3         四甲苯       04       08       -       19       -       07       09       -       03       -       08       11       -       -       0       8       1.5       1.1       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4 <td< td=""><td>1,2,3<b>-</b><br/>三甲苯</td><td>1.5</td><td>1.3</td><td>68</td><td>57</td><td>X</td><td>1.8</td><td>1.6</td><td>6 1</td><td>60</td><td>-</td><td>1. 7</td><td>1.6</td><td>49</td><td>4.7</td><td>-</td><td>1.6</td><td>2 0</td><td>2 2</td><td>2 0</td><td>1.9</td><td>2 2</td><td>1.8</td><td>29</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2,3 <b>-</b><br>三甲苯     | 1.5         | 1.3    | 68        | 57           | X    | 1.8  | 1.6   | 6 1       | 60          | -    | 1. 7  | 1.6  | 49    | 4.7         | -     | 1.6   | 2 0  | 2 2   | 2 0   | 1.9  | 2 2  | 1.8  | 29    |
| 四甲苯 0 4 0 8 - 1 9 - 0 7 0 9 - 0 3 - 0 8 1 1 0 8 1 5 1 1 1 4 1 4 1 6 1 4<br>二甲苯异构体, % (mol) 第二甲苯 23 1 22 1 23 4 23 7 24 4 22 7 23 4 23 1 23 2 22 6 22 6 22 7 24 2 23 2 22 3 22 8 23 8 24 9 23 2 22 6 23 7 23 2<br>间二甲苯 52 9 53 9 52 4 52 3 52 1 53 1 53 1 52 4 52 5 53 3 53 2 53 2 51 9 52 4 53 0 52 9 52 1 53 0 53 0 52 9 52 9 52 7<br>对二甲苯 24 0 24 0 24 2 24 0 23 5 24 2 23 5 24 4 24 3 24 1 24 2 24 1 24 9 24 4 24 7 24 3 24 1 22 1 22 8 24 5 24 4 24 1<br>反应的选择性, % 甲苯-脱烷 0 42 1 28 1 60 1 38 2 63 0 31 0 81 1 81 1 95 2 83 0 45 0 60 2 58 3 37 1 85 0 84 0 41 0 47 0 42 0 36 0 42 0 43<br>1,3,5 - =<br>甲苯-脱烷 0 24 0 07 - 0 28 - 0 06 0 06 - 0 6 - 0 6 - 0 06 0 06 0 6 0 06 - 0 0 6 0 06 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 6 0 06 - 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2,4 <sup>-</sup><br>三甲苯 | 13 6        | 10 9   | 52 6      | 42 9         | 50 1 | 16 3 | 11. 9 | 56 2      | 48 2        | 56 4 | 13 8  | 12 6 | 60 0  | 43 5        | 67.4  | 11. 9 | 15 3 | 14 0  | 15.1  | 14 7 | 16 8 | 14.3 | 22 0  |
| 二甲苯异构体, % (m ol)   ④二甲苯 23 1 22 1 23 4 23 7 24 4 22 7 23 4 23 1 23 2 22 6 22 6 22 7 24 2 23 2 22 3 22 8 23 8 24 9 23 2 22 6 23 7 23 2 2   i 2 1 23 4 23 7 24 4 22 7 23 4 23 1 23 2 22 6 22 7 24 2 23 2 23 2 2 8 23 8 24 9 23 2 22 6 23 7 23 2   i 3 5 2 9 52 9 52 9 52 7   j 3 5 2 4 5 2 9 52 4 52 3 52 1 53 1 53 1 53 1 52 4 52 5 53 3 53 2 51 9 52 4 53 0 52 9 52 1 53 0 53 0 52 9 52 9 52 7   j 4 1 24 0 24 0 24 0 24 0 24 2 24 0 23 5 24 2 23 5 24 2 43 24 1 24 2 24 1 24 9 24 4 24 7 24 3 24 1 22 1 22 8 24 5 24 4 24 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 四甲苯                       | 04          | 0.8    | Ŋ         | 1.9          | -    | 0 7  | 09    | -         | 03          | -    | 0 8   | 1. 1 | -     | -           | -     | 0 8   | 1.5  | 1. 1  | 1.4   | 1.4  | 1.6  | 1.4  | 2 6   |
| 第二甲苯 23 1 22 1 23 4 23 7 24 4 22 7 23 4 23 1 23 2 22 6 22 7 24 2 23 2 2 3 22 8 23 8 24 9 23 2 22 6 23 7 23 2<br>间二甲苯 52 9 53 9 52 4 52 3 52 1 53 1 53 1 53 1 52 4 52 5 53 3 53 2 53 2 51 9 52 4 53 0 52 9 52 1 53 0 53 0 52 9 52 9 52 7<br>对二甲苯 24 0 24 0 24 2 24 0 23 5 24 2 23 5 24 4 24 3 24 1 24 2 24 1 24 9 24 4 24 7 24 3 24 1 22 1 22 8 24 5 24 4 24 1<br>反应的选择性。% 甲苯-脱烷 0 42 1 28 1 60 1 38 2 63 0 31 0 81 1 81 1 95 2 83 0 45 0 60 2 58 3 37 1 85 0 84 0 41 0 47 0 42 0 36 0 42 0 43<br>1,3,5 <sup>-</sup> = 甲苯-脱烷 0 42 1 0 07 - 0 28 - 0 06 0 06 - 0 6 - 0 6 - 0 06 - 0 06 0 06 0 0 6 0 06 0 0 6 0 06 0 06 - 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 二甲苯异                      | 异构体         | , % (n | nol)      |              |      |      |       |           |             |      |       |      |       |             |       |       |      |       |       |      |      |      |       |
| 间二甲苯 52 9 53 9 52 4 52 3 52 1 53 1 53 1 53 1 52 4 52 5 53 3 53 2 51 9 52 4 53 0 52 9 52 1 53 0 53 0 52 9 52 9 52 7<br>对二甲苯 24 0 24 0 24 2 24 0 23 5 24 2 23 5 24 4 24 3 24 1 24 2 24 1 24 9 24 4 24 7 24 3 24 1 22 1 22 8 24 5 24 4 24 1<br>反应的选择性,%<br>甲苯-脱烷 0 42 1 28 1 60 1 38 2 63 0 31 0 81 1 81 1 95 2 83 0 45 0 60 2 58 3 37 1 85 0 84 0 41 0 47 0 42 0 36 0 42 0 43<br>1,3,5 <sup>-</sup> =<br>甲苯-脱烷 0 24 0 07 - 0 28 - 0 06 0 06 - 0 6 - 0 06 0 06 0 06 0 06 0 06 0 06 0 06 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 邻二甲苯                      | 23 1        | 22 1   | 23 4      | 23 7         | 24 4 | 22 7 | 23 4  | 23 1      | 23 2        | 22 6 | 22 6  | 22 7 | 24.2  | 23 2        | 22 3  | 22 8  | 23 8 | 24 9  | 23 2  | 22 6 | 23 7 | 23 2 | 24 3  |
| 对二甲苯 24 0 24 0 24 2 24 0 23 5 24 2 23 5 24 4 24 3 24 1 24 2 24 1 24 9 24 4 24 7 24 3 24 1 22 1 22 8 24 5 24 4 24 1<br>反应的选择性,%<br>甲苯 <sup>-</sup> 脱烷 0 42 1 28 1 60 1 38 2 63 0 31 0 81 1 81 1 95 2 83 0 45 0 60 2 58 3 37 1 85 0 84 0 41 0 47 0 42 0 36 0 42 0 43<br>1,3,5 <sup>-</sup> 三<br>甲苯 <sup>-</sup> 脱烷 0 24 0 07 - 0 28 - 0 06 0 06 - 0 6 - 0 06 - 0 06 0 06 0 06 0 06 0 08 0 07 0 09 0 09 0 10 0 08<br>基/转烷基<br>1,3,5 <sup>-</sup> 三<br>甲苯 <sup>-</sup> 一開茶 <sup>-</sup> 一開茶 <sup>-</sup> 一開茶 <sup>-</sup> 一開茶 <sup>-</sup> 一開茶 <sup>-</sup> 一開茶 <sup>-</sup> 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 间二甲苯                      | 52 9        | 53 9   | 52 4      | 52 3         | 52 1 | 53 1 | 53 1  | 52 4      | 52 5        | 53 3 | 53 2  | 53 2 | 51.9  | 52 4        | 53 0  | 52 9  | 52 1 | 53 0  | 53 0  | 52 9 | 52 9 | 52 7 | 52 7  |
| 反应的选择性,%  甲苯-脱烷 0 42 1 28 1 60 1 38 2 63 0 31 0 81 1 81 1 95 2 83 0 45 0 60 2 58 3 37 1 85 0 84 0 41 0 47 0 42 0 36 0 42 0 43 1,3,5 - 三 甲苯-脱烷 0 24 0 07 - 0 28 - 0 06 0 06 - 0 6 - 0 06 0 06 0 06 0 06 0 07 0 09 0 09 0 10 0 08 基/转烷基<br>事素-脱烷 0 24 0 07 - 0 28 - 0 06 0 06 - 0 6 - 0 06 0 06 0 06 0 06 0 06 0 08 0 07 0 09 0 09 0 10 0 08 基/转烷基<br>事素-异构 0 32 0 47 5 26 3 27 5 41 0 52 0 45 6 28 4 76 7 60 0 45 0 44 8 51 5 06 11 0 0 29 0 52 0 39 0 76 0 36 0 46 0 50 化/转烷基                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 对二甲苯                      | 24 0        | 24 0   | 24 2      | 24.0         | 23 5 | 24 2 | 23 5  | 24 4      | 24 3        | 24.1 | 24 2  | 24 1 | 24.9  | 24 4        | 24 7  | 24.3  | 24 1 | 22 1  | 22 8  | 24 5 | 24 4 | 24.1 | 23 0  |
| 甲苯-脱烷 0 42 1 28 1 60 1 38 2 63 0 31 0 81 1 81 1 95 2 83 0 45 0 60 2 58 3 37 1 85 0 84 0 41 0 47 0 42 0 36 0 42 0 43<br>基/转烷基 0 42 1 28 1 60 1 38 2 63 0 31 0 81 1 81 1 95 2 83 0 45 0 60 2 58 3 37 1 85 0 84 0 41 0 47 0 42 0 36 0 42 0 43<br>1,3,5 =<br>甲苯-脱烷 0 24 0 07 - 0 28 - 0 06 0 06 - 0 6 - 0 06 0 06 0 0 6 0 06 0 0 6 0 08 0 07 0 09 0 09 0 10 0 08<br>基/转烷基<br>1,3,5 =<br>甲苯-异构 0 32 0 47 5 26 3 27 5 41 0 52 0 45 6 28 4 76 7 60 0 45 0 44 8 51 5 06 11 0 0 29 0 52 0 39 0 76 0 36 0 46 0 50<br>化/转烷基                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 反应的选                      | 择性,         | %      |           |              |      |      |       |           |             |      |       |      |       |             |       |       |      |       |       |      |      |      |       |
| 1,3,5 <sup>-</sup> 三<br>甲苯 <sup>-</sup> 脱烷 0 24 0 07 - 0 28 - 0 06 0 06 - 0 6 - 0 06 0 06 0 06 0 08 0 07 0 09 0 09 0 10 0 08<br>基/转烷基<br>1,3,5 <sup>-</sup> 三<br>甲苯 <sup>-</sup> 异构 0 32 0 47 5 26 3 27 5 41 0 52 0 45 6 28 4 76 7.60 0 45 0 44 8 51 5 06 11 0 0 29 0 52 0 39 0 76 0 36 0 46 0 50<br>化/转烷基                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 甲苯⁻脱烷<br>基∕转烷基            | <b>û</b> 42 | 1. 28  | 1 60      | 1. 38        | 2 63 | 0 31 | 0 81  | 1.81      | 1.95        | 2 83 | 0 45  | 0 60 | 2 58  | 3 37        | 1. 85 | 0 84  | 0 41 | 0 47  | 0 42  | 0 36 | 0 42 | 0 43 | 0 33  |
| 1,3,5 <sup>-</sup> 三<br>甲苯 <sup>-</sup> 异构 0 32 0 47 5 26 3 27 5 41 0 52 0 45 6 28 4 76 7.60 0 45 0 44 8 51 5 06 11 0 0 29 0 52 0 39 0 76 0 36 0 46 0 50<br>化/转烷基                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,3,5⁻三<br>甲苯⁻脱烷<br>基/转烷基 | 0 24        | 0 07   | -         | 0 28         | -    | 0 06 | 0 06  | -         | 06          | -    | 0 06  | 0 06 | -     | -           | -     | 0 06  | 0 08 | 0 07  | 0 09  | 0 09 | 0 10 | 0 08 | 0 19  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,3,5-三<br>甲苯-异构<br>化/转烷基 | 0 32        | 0 47   | 5 26      | 3 27         | 5 41 | 0 52 | 0 45  | 6 28      | 4 76        | 7.60 | 0 45  | 0 44 | 8 51  | 5 06        | 11. 0 | 0 29  | 0 52 | 0 39  | 0 76  | 0 36 | 0 46 | 0 50 | 0 67  |

注: \* 不同硅铝比; 反应条件: T = 380 ; 重量空时速率: 2 h<sup>-1</sup>; 载气 N 2, 流速: 20 mL /m in。

由表 1 可见, 在 H  $\beta$ 沸石上甲苯转化率可达 33 5%, 1, 3, 5 三甲苯的转化率可达 88 4%, HY 沸石的初活性要大于 H  $\beta$  此外, HY 沸石的甲苯 转化率下降很快, 到反应时间为 360 m in 以后, 甲 苯转化率已从 60 m in 时的 40 7% 降到20 2%。 而 H  $\beta$ 的活性比较稳定, 到 360 m in 时甲苯的转化 率仅降低约 4%。由表 1 的结果看, 不同 Si/A 1 比 的 HZSM = 5 沸石的活性和稳定性都远不如 H $\beta$ 和 HY 沸石, 体系中的二甲苯含量也远远低于其 它两个催化剂。对于 HY 和 H $\beta$ 沸石催化剂, 1, 3, 5 = 三甲苯的转化率不随反应时间延长而下降。

对于HY,HZSM -5和H $\beta$ 转烷基反应性能的差异,可以由如下两方面讨论:一是孔道适应性问题。先考虑分子的临界动力直径,对二甲苯的直

7

径为 0 585 nm, 间 邻二甲苯的直径为 0 68 nm, 1, 2, 4 <sup>-</sup>三甲苯的直径为 0 76 nm, 1, 2, 3 <sup>-</sup>三甲苯 的直径为 0 81 nm, 1, 3, 5 <sup>-</sup>三甲苯的直径为 0 86 nm。 $\beta$ 沸石的孔道由 12 元环组成, 孔径为 0 75 × 0 57 nm 和 0 65 × 0 56 nm, 孔道多为直线型, 并 且孔程短, 有利于分子的扩散, 加上反应温度下的 沸石窗口扩张 0 1 nm, 足以使均三甲苯分子进入 沸石晶内进行反应, 因此活性较高。而HZSM <sup>-</sup> 5 沸石由 10 元环组成, 具有双向的交叉孔道, 一组 孔道平行于 a 轴, 为 S 字型通道, 孔径为 0 54 × 0 56 nm, 另一组孔道呈椭圆型, 平行于 b 轴, 为 直径 0 51 × 0 55 nm 的直孔道。ZSM <sup>-</sup> 5 沸石的 骨架中没有笼, 其孔道就是它的空腔, 由于孔径较 小, 反应物和产物分子在 ZSM <sup>-</sup> 5 晶内的扩散受 到分子的通道控制,孔径阻碍了烷基芳烃进入孔 道,并阻止了庞大的产物分子的生成和积累,同时 只允许小过渡态分子的反应的存在。从约束指数 也表明了这一点、ZSM = 5的约束指数CI为 8 3、 而 $\beta$ 沸石的约束指数仅为06。由于在反应温度 下沸石的窗口不是刚性的、大约有1Å的扩张、因 此原料中仅有很少量的均三甲苯分子能进入沸石 的晶内微孔和甲苯参加反应,大部分均三甲苯分 子只能在沸石催化剂的外表面反应,因此 ZSM -5的活性就比较低,表现出歧化反应和异构化反 应的选择性大。对于 Y 型沸石, 其孔径在 0.9~ 1.0 nm 左右, 有笼状结构, 足以使大反应物分子 进入孔道内进行反应,这一点与β沸石相似,所以 初活性也很高,但因为有笼的存在,可能会造成反 应物分子和产物分子聚合而结焦失活。二是从酸 中心适应性考虑。一般认为,下列反应所需的固体 酸强度顺序为:裂化>脱烷基>异构化>烷基化。 一般说来, HZSM -5 的强酸中心比HB多, 但强 酸中心引起的是裂化和脱烷基反应,以及积炭失 活。由表 1 可知, 在 HZSM - 5(38) 上产物苯的含 量随时间变化越来越高,除一部分由甲苯的歧化 反应而生成之外,可能和甲苯和 1,3,5-三甲苯的 脱甲基反应有关。

HY、Hβ和HZSM <sup>-5</sup> 的吡啶吸附红外光谱 图见图 1, 其酸中心数据见表 2。



HZSM  $^{-5}$ 上 1450 cm  $^{-1}$ 所代表的的B 酸和 1540 cm  $^{-1}$ 所代表的L 酸量都比 H $\beta$ 大得多, 但催化活

7

| 性  | ¥  | 7 | Г        | 高     |
|----|----|---|----------|-------|
| 11 | ノト | - | <b>י</b> | l ⊐Jo |

表 2 吡啶吸附红外光谱酸中心数据

| (出)(1) 一 |      | 波数/cm <sup>-1</sup> |      |
|----------|------|---------------------|------|
| 1隹1七剂    | 1540 | 1490                | 1450 |
| Hβ       | 1. 1 | 4.2                 | 8 1  |
| ΗY       | 3.1  | 2 5                 | 7. 2 |
| HZSM -5  | 9.1  | 8 8                 | 9.4  |

一般来说,随着 Si/A1比的增大,HZSM - 5 沸石分子筛的酸强度和总酸量要降低,对一些强 酸催化反应来说催化活性随酸中心的减少而下 降。本文也考察了不同 Si/A1比的HZSM - 5 催 化剂对烷基转移反应的影响,由表1可见,Si/A1 比为 38 的HZSM - 5 沸石,甲苯和1,3,5 - 三甲 苯的转化率均高于 Si/A1比为 25 和 50 的HZSM - 5 沸石,由此可见,并非 Si/A1比愈小,酸中心愈 强的沸石就对酸催化反应的活性越好,酸中心强 度和酸催化反应类型有密切关系,只有进行全面 研究各个因素,才能进一步了解分子筛酸性作用 的规律。

由表 1 可见, HY, H $\beta$ 以及 HZSM <sup>-</sup> 5 催化剂 的二甲苯混合产物中, 瓴 间, 对二甲苯的含量组 成近似与热力学平衡组成(见表 3),这也支持了 孔道适应性的原理,说明这些沸石催化剂的孔径 对产物的择形性不高,另外,从后面的改性沸石分 子筛的实验数据来看,混合二甲苯的异构体的百 分含量组成也近似等于热力学的平衡组成值,这 从另一个角度说明了对大中孔沸石分子筛的孔道 修饰作用不太容易。文献认为[1,2],二甲苯的扩散 系数大小顺序为: 对二甲苯≫ 间二甲苯> 邻二甲 苯,为提高对二甲苯的选择性,应采用大晶粒沸 石,因为晶粒大孔道长,晶内扩散阻力大,有利于 发挥扩散速度快的对二甲苯的扩散优势,把扩散 慢的邻 间二甲苯甩在后面,使对二甲苯率先跑出 孔道,成为浓度大于平衡值的产物,否则产物则是 接近热力学平衡组成的混合二甲苯。此外,文献 [3~5]也有相关研究报道。

表 3 二甲苯异构体的平衡浓度

| 温度/K | 邻二甲苯  | 间二甲苯  | 对二甲苯  |
|------|-------|-------|-------|
| 300  | 23 82 | 59.80 | 16 38 |
| 400  | 24.24 | 56 82 | 18 94 |
| 500  | 24.07 | 54.77 | 21.16 |
| 600  | 23 1  | 53.24 | 22 95 |
| 700  | 23.45 | 52 12 | 24.43 |
| 800  | 23.09 | 51.35 | 25.56 |
| 900  | 23.81 | 50 58 | 26 61 |
| 1000 | 22 49 | 50.06 | 27.45 |

#### 22 反应条件对 H $\beta$ 沸石的影响

#### 2 2 1 温度的影响

甲苯歧化和烷基转移反应都是可逆反应,反 应温度对化学平衡影响不大,而主要表现在对催 化剂活性的影响上,通常的反应温度是 390~450

, 见表 4。

表 4 反应温度对 Ηβ催化剂活性的影响

| 反应温度/K                                         | 563  | 583  | 623  | 653  | 683  | 723  | 773   |
|------------------------------------------------|------|------|------|------|------|------|-------|
| 转化率, %                                         |      |      |      |      |      |      |       |
| 甲苯                                             | 12 7 | 19.7 | 25.5 | 30 6 | 34.8 | 39.6 | 45.1  |
| 1,3,5 <b>-</b> 三甲苯                             | 75.6 | 84.4 | 80 4 | 88 2 | 88 8 | 88 8 | 88 8  |
| 产物选择性,%(mol)                                   |      |      |      |      |      |      |       |
| 苯                                              | 2 0  | 29   | 4.5  | 68   | 9.6  | 13 6 | 21.6  |
| 二甲苯                                            | 62 2 | 70 6 | 72 6 | 75.8 | 74.0 | 70 7 | 64.6  |
| 1,2,3 -三甲苯                                     | 3.3  | 26   | 2 0  | 1. 9 | 1. 8 | 1. 7 | 1. 7  |
| 1,2,4 -三甲苯                                     | 29.7 | 21.2 | 15.5 | 14.1 | 13.2 | 12 6 | 11. 1 |
| 四甲苯                                            | 27   | 27   | 1. 6 | 1. 3 | 1. 4 | 1. 3 | 1. 0  |
| 二甲苯异构体,% (mo                                   | 1)   |      |      |      |      |      |       |
| 邻二甲苯                                           | 23.1 | 22 4 | 23.4 | 23.9 | 23.5 | 23.8 | 24.4  |
| 间二甲苯                                           | 52 5 | 52 5 | 52 5 | 52 9 | 53 0 | 52 7 | 52 5  |
| 对二甲苯                                           | 24.4 | 24.1 | 24.1 | 23.2 | 23.5 | 23.5 | 24.1  |
| 反应的选择性,%                                       |      |      |      |      |      |      |       |
| 甲苯-脱烷基/转烷基                                     | 0 14 | 0 18 | 0.20 | 0 84 | 0 61 | 0 97 | 2 05  |
| 1,3,5 <sup>-</sup> 三甲苯 <sup>-</sup><br>脱烷基/转烷基 | 0 18 | 0 16 | 0.10 | 0 06 | 0 08 | 0 09 | 0 10  |
| 1,3,5 <sup>-</sup> 三甲苯 <sup>-</sup><br>异构化/转烷基 | 1.15 | 0 73 | 0 62 | 0 29 | 0 47 | 0 51 | 0 61  |

注: T = 653 K, 重量空时速率: 2 h<sup>-1</sup>, 载气N<sub>2</sub>, 流速: 20 mL/ m in; 该反应由低温向高温连续进行, 每个温度条件反应 1 h。(下同)

由表 4 可见, 随着反应温度的升高, 甲苯和均 三甲苯的转化率都大大的提高,1,3,5-三甲苯的 转化率在 380 左右就达到了最高点, 此后不随 反应温度的升高而上升。随着反应温度的升高,1, 2,4-三甲苯产物的选择性显著降低,1,2,3-三甲 苯的产物选择性也呈降低趋势,而1,3,5-三甲苯 的转化率并没有太大的提高, 说明异构化反应得 到抑制。而在温度较低时,1,3,5-三甲苯的异构 化反应占主导;另一方面,分子直径的大小顺序为 1,3,5-三甲苯>1,2,3-三甲苯>1,2,4-三甲 苯,因此扩散阻力的顺序为1,3,5-三甲苯>1,2,3-三甲苯> 1, 2, 4-三甲苯, 产物的浓度恰好相 反,不过1,3,5-三甲苯具有热力学优势,达到热 平衡<sup>[6]</sup>的温度较低。此外,随着反应温度的提高, 甲苯的歧化反应选择性大大增加了,表现在产物 中苯的浓度有显著的提高,在低温时,甲苯分子并 不足以与 1, 3, 5 - 三甲苯竞争催化剂的酸性活性 位,而是与1.3.5-三甲苯吸附分子发生烷基转移

反应,因此表现在甲苯分子的烷基转移反应的选 择性比歧化选择性高。

文献[7]认为,反应温度升高,在孔道中生成 的瓴间二甲苯的异构化速率和它们的扩散速率 之比将增加,这对提高对二甲苯的选择性有利,另 一方面,由于邻间二甲苯的扩散活化能比对二甲 苯的大,反应温度升高相对有利于前两者的扩散, 不利于对二甲苯的提高。表4的数据也证明了这 一点,二甲苯异构体的含量组成没有随温度发生 明显的变化,说明对二甲苯的产物选择性表现为 两者的综合效应。有关二甲苯混合物异构体的热 力学平衡值参见表3。

2 2 2 空速的影响

空速的影响见表 5。

表 5 空速的影响

| 重量空时速率/h <sup>-1</sup>   | 1    | 2    | 3     | 4    | 6    | 8    |
|--------------------------|------|------|-------|------|------|------|
| 转化率, % (mol)             |      |      |       |      |      |      |
| 甲苯                       | 34.7 | 33.5 | 27. 2 | 25.7 | 23.5 | 20 8 |
| 1,3,5 <b>-</b> 三甲苯       | 88 4 | 88 9 | 86 7  | 88 3 | 87.5 | 86 3 |
| 产物选择性, % (mol)           |      |      |       |      |      |      |
| 苯                        | 8 1  | 60   | 5.4   | 5.4  | 5.0  | 4.6  |
| 二甲苯                      | 74.8 | 77.1 | 75.0  | 74.0 | 72 0 | 68 7 |
| 1,2,3-三甲苯                | 1. 9 | 1. 9 | 2 1   | 2 2  | 2 4  | 2 8  |
| 1,2,4-三甲苯                | 13.8 | 14.3 | 15.8  | 16 5 | 18 3 | 21.1 |
| 四甲苯                      | 1.4  | 0.6  | 1. 7  | 1. 9 | 2 2  | 2 7  |
| 二甲苯异构体, % (mol)          |      |      |       |      |      |      |
| 邻二甲苯                     | 23.6 | 23.4 | 23 0  | 23.5 | 23 0 | 23.1 |
| 间二甲苯                     | 53 2 | 53 3 | 53 3  | 52 6 | 53 2 | 53.0 |
| 对二甲苯                     | 23 2 | 23 3 | 23 7  | 23 8 | 23 8 | 23.9 |
| 反应选择性, % (mol)           |      |      |       |      |      |      |
| 甲苯-脱烷基/转烷基               | 0 49 | 0 34 | 0 31  | 0.32 | 0.31 | 0 30 |
| 1, 3, 5 ⁻三甲苯⁻脱烷<br>基∕转烷基 | 0 08 | 0 04 | 0 10  | 0.12 | 0.14 | 0 18 |
| 1,3,5⁻三甲苯⁻异构<br>化/转烷基    | 0 48 | 0 46 | 0 52  | 0.56 | 0.64 | 0 77 |

由表 5 可知,随着反应空速的增加,甲苯的转 化率逐渐下降,而 1,3,5 <sup>-</sup>三甲苯的转化率并没有 很明显的变化。提高空速,意味着反应物分子与催 化剂的接触时间变短,反应的程度降低,反映在表 5 中,1,3,5 <sup>-</sup>三甲苯的异构化反应的选择性的上 升,导致了 1,2,4 <sup>-</sup>三甲苯和 1,2,3 <sup>-</sup>三甲苯产物 选择性的增加。而四甲苯含量随空速增大而逐渐 增加,说明了 1,3,5 <sup>-</sup>三甲苯歧化反应选择性的也 缓慢增加,另外,甲苯分子的歧化反应程度却随空 速的增加而降低。因此,可以认为,1,3,5 <sup>-</sup>三甲苯 的歧化和异构化反应比 1,3,5 <sup>-</sup>三甲苯和甲苯的 烷基转移反应更易于进行,1,3,5 <sup>-</sup>三甲苯的歧化 和异构化反应随着反应物与催化剂接触时间增长 而逐渐削弱, 1, 3, 5<sup>-</sup>三甲苯和甲苯的烷基转移反 应则随接触时间增加逐渐占主导地位。

# 223 原料配比的影响

原料配比的影响见表 6。

表 6 H<sup>-</sup>Beta 催化剂上甲苯和

1,3,5-三甲苯的歧化反应

| 百岁        | 转化率, % (mol) |                        |  |  |  |  |
|-----------|--------------|------------------------|--|--|--|--|
|           | 甲苯           | 1,3,5 <sup>-</sup> 三甲苯 |  |  |  |  |
| 甲苯        | 17.6         | -                      |  |  |  |  |
| 1,3,5-三甲苯 | -            | 28 5                   |  |  |  |  |

由表 6 可见, 甲苯歧化的转化率为 17.6%, 1,3,5 <sup>-</sup>三甲苯的歧化转化率为 28.5%, 可见单独 原料甲苯或 1,3,5 <sup>-</sup>三甲苯的歧化转化率都远远 低于甲苯和 1,3,5 <sup>-</sup>三甲苯的烷基转移反应的转 化率。关于原料配比对烷基转移反应的影响的文 献很多, 并认为甲苯和三甲苯的混合有利于相互 提高彼此的转化率, 而且原料中C<sub>9</sub> 的含量直接影 响到 C<sub>8</sub> 芳烃的产率, 陶克毅等认为, C<sub>9</sub> 的含量在 40% ~ 60% 或甲基/苯基比为 2 时比较适宜<sup>(8)</sup>, 文 献[6]中列出了原料中甲基/苯环比与各芳烃产物 含量的关系, 认为随着三甲苯的加入, 甲苯的转化 率将上升, 当三甲苯/甲苯等于 4.5, 即平均甲基/ 苯环= 2.56 时, 甲苯的转化率达到热平衡值。

从经济的角度来说,在甲苯为主的原料中,掺 入三甲苯可使甲苯的转化率上升,反应温度下降, 二甲苯的含量增加。缘于在以甲苯为主,含少量三 甲苯的原料中,吸附位上的三甲苯形成C<sup>+</sup>,可以 进行单分子异构化反应,或双分子歧化反应,或与 甲苯进行转烷基,甲苯的扩散速度远比三甲苯快, 因此,孔内浓度甲苯远远大于三甲苯,三甲苯的正 碳离子接触甲苯的几率也远远大于接触三甲苯的 几率,因此,三甲苯与甲苯转甲基反应生成两分子 的二甲苯。在以三甲苯为主的原料中,少量的甲苯 可与三甲苯反应生成二甲苯,抑制三甲苯的歧化 反应, 使三甲苯的转化率降低, 但此时甲苯的反应 温度比单独甲苯的歧化温度约低 373 K。在低反 应温度下,甲苯不足以与三甲苯竞争生成活性位, 甲苯的角色是寻找三甲苯, 与三甲苯发生转甲基 反应,因此,甲苯 100% 的生成二甲苯,甲苯的转 化率和二甲苯的产率都增加。

文献[9]研究了 1, 2, 3 - 三甲苯, 1, 2, 4 - 三甲 苯以及 1, 3, 5 - 三甲苯相互混合对彼此转化率的 影响和对产物二甲苯选择性的效应, 认为甲苯的 掺入, 有利于二甲苯的产率, 以 1, 2, 3 - 三甲苯或 1,2,4 - 三甲苯为主的原料产生最多的四甲苯。

为模拟工业反应,本实验的原料采用甲苯和 1,3,5<sup>-</sup>三甲苯配比为重量比约为20618,摩尔比 为27211,甲苯的当量(即甲基/苯环比)约为 1536。

2 2 4 载气 N<sub>2</sub> 流速的影响

载气N<sub>2</sub> 流速对 H $\beta$ 催化活性的影响结果见表 7。

表 7 载气  $N_2$  流速对  $H\beta$  催化活性的影响

| 载气流速 /mL ·m in <sup>-1</sup>                | 10   | 20   | 40   |
|---------------------------------------------|------|------|------|
| 转化率, % (mol)                                |      |      |      |
| 甲苯                                          | 36.5 | 34.8 | 22 2 |
| 1,3,5-三甲苯                                   | 88 5 | 88 1 | 86 4 |
| 产物选择性,%                                     |      |      |      |
| 苯                                           | 65   | 4.5  | 27   |
| 二甲苯                                         | 74.9 | 72 2 | 68 6 |
| 1, 2, 3 <sup>-</sup> 三甲苯                    | 1. 9 | 2 3  | 3.0  |
| 1, 2, 4 <sup>-</sup> 三甲苯                    | 15.2 | 17.8 | 22 6 |
| 四甲苯                                         | 1.6  | 3.1  | 3.2  |
| 二甲苯异构体,% (mol)                              |      |      |      |
| 邻⁻二甲苯                                       | 23.2 | 22 9 | 21.1 |
| 间一二甲苯                                       | 54.0 | 54.2 | 54.5 |
| 对⁻二甲苯                                       | 22 8 | 22 9 | 24.4 |
| 反应选择性,% (mol)                               |      |      |      |
| 甲苯⁻脱烷基/转烷基                                  | 0.39 | 0 28 | 0.17 |
| 1,3,5 <sup>-</sup> 三甲苯 <sup>-</sup> 脱烷基/转烷基 | 0.09 | 0.19 | 0 21 |
| 1,3,5-三甲苯-异构化/转烷基                           | 0.51 | 0 62 | 0.83 |

由表 7 可见, 随着载气N<sub>2</sub> 流速的增大, 表现 出来的结果与增加空速相似。载气流速增大, 甲苯 的转化率逐渐降低, 而 1, 3, 5 <sup>-</sup>三甲苯的转化率没 有明显的变化, 而且, 随着载气流速的增加, 和增 加空速一样, 甲苯的歧化反应程度降低, 1, 3, 5 <sup>-</sup> 三甲苯的异构化程度增加, 产物中 1, 2, 3 <sup>-</sup>三甲苯 和 1, 2, 4 <sup>-</sup>三甲苯的含量增加较明显, 二甲苯异构 体中的对二甲苯的含量也有所增加。这是因为加 大载气流量相当于提高反应物与产物通过催化剂 床层的线速度, 缩短它们与催化剂接触时间, 所以 表现出与空速改变的相似结果。

#### 参考文献

- 1 Frilette V J, et al J Catal, 1981, 67: 218~ 222
- 2 赵振华 化学世界, 1987, 4: 154~ 157
- Jagannath Das, et al ApplCatalA: General 1974, 116: 71~
   79
- 4 Pukanic GW, Massoth F E J Catal, 1973, 28: 304~ 315
- 5 Aneke L E, Gerritsen L A, et al J Catal, 1979, 59: 26~ 36
- 6 IkaiWang, Tsengchang Tsai, et al Ind Eng Chem Res,

徐占林 毕颖丽 甄开吉

(吉林大学化学系,长春,130023)

制备了一系列六铝酸盐 SiMA linO ip-o催化剂。并通过 XRD、XPS、TPR 和 TGA 等实验技术对催化剂的结构和性能进行了表征。结果表明,这类物质的还原性和对二氧化碳重整甲烷制合成气反应催化活性与其结构和晶格中过渡金属M 的性质密切相关。在 780 反应 2 h, 六铝酸盐 SiN iA linO ip-o表现出最高的催化活性和稳定性, CH4 和 CO 2 转化率分别保持在 95 0% 和 93 4% 以上, 其它过渡金属M 取代六铝酸盐活性均低于 SiN iA linO ip-o的活性。六铝酸盐晶格中过渡金属的活性顺序为N i》Co > Fe > M n > Cu。

关键词: 六铝酸盐 SMA linO 19-8 甲烷 CO 2 - 重整 合成气

二氧化碳重整甲烷制合成气作为甲烷转化和 二氧化碳利用的一个有效途径,兼具能源转化和 环境保护的双重意义,近些年受到国内外越来越 多的关注<sup>[1]</sup>。CO<sub>2</sub> 作为含碳化合物的燃烧终产物, 其排放量正以每年 4% 的速度递增。大气中高浓 度的 CO 2 破坏了大气平衡, 是造成全球气候恶化的主要原因, CO 2 重整甲烷取代传统的水蒸气, 以

收稿日期: 1999<sup>-06-10</sup>; 修改稿收到日期: 2000<sup>-03-0</sup>& 作者简介: 徐占林 35岁, 讲师, 主要从事天然气催化转化 方面的研究工作, 已发表论文 20 余篇。

1990, 29: 2005~ 2012 7 Wei J. J Catal, 1982, 76: 433~ 439 8 陶克毅等. 石油化工, 1992, 21(11): (1992) 445~449

9 Barakat Y, M ik hail S, et al, Zeolites 1987, 7: 235~ 239

# THE TRANSAL KYLATION REACTION OF TOLUENE AND 1, 3, 5 <sup>-</sup> TR M ETHYL BENZENE OVER D IFFERENT ZEOL ITE CATALY STS

Zeng Haisheng and Guan Naijia

(Institute of N ew Catalytic M aterial Science in D ep arm ent of Chemistry, N ankai U niversity, T ianjin, 300071)

L iu Shuquan

(Catalyst Plant of Nankai University, Tianjin, 300071)

# Abstract

The transalkylation reaction of toluene and 1, 3, 5<sup>-</sup> trimethylbenzene over zeolites HY, H $\beta$  and HZSM <sup>-</sup> 5 with different Si/Al ratio was investigated. The best catalytic activity and stability on H $\beta$  was proved. The effects of reaction conditions on the catalytic activity, durability of the zeolites, as well as the selectivity of products such as reaction temperature, WHSV, feedstock's composition, and the velocity of carrier gas N<sub>2</sub> were also studied

**Keywords**: to luene; 1, 3, 5 - trimethylbenzene; transalkylation; zeo lites