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� Remarkable performance in aqueous
phase hydrodeoxygenation was
achieved at 413 K.
� Bifunctional Ru/H-Beta was

developed for lignin-derived
compounds upgrading.
� Reaction conditions and catalyst

constitution are crucial for the high
activity.
� Hydrodeoxygenation reaction

pathway on Ru/H-Beta was
illustrated.
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Bifunctional ruthenium catalysts supported on H-Beta zeolite were designed and applied in the
hydrodeoxygenation of lignin-derived phenolic compounds for bio-oil upgrading. The oxygen-containing
groups in lignin-derived phenolic monomers and dimers could be efficiently removed through aqueous
phase hydrodeoxygenation catalyzed by Ru/H-Beta under very mild conditions, i.e. at 413 K and 4 MPa
H2. Characterization results revealed that ruthenium species existed in the form of highly dispersed
nanoparticles on H-Beta zeolite, while the presence of both Brønsted and Lewis acid sites in zeolite
was crucial for the remarkable hydrodeoxygenation activity. The effects of reaction conditions and cata-
lyst constitution on the catalytic performance of Ru/H-Beta in hydrodeoxygenation were systematically
investigated. The hydrodeoxygenation pathway of diphenyl ether as a model compound catalyzed by
optimized 0.5%Ru/H-Beta was discussed and the structure-activity relationship in hydrodeoxygenation
was proposed.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, energy shortage and environmental pollution are
two major problems all over the world. It is quite urgent to explore
new and renewable energy source with low NOx and SOx

emissions. Lignocellulose has attracted great attention due to its
abundant source, high energy content and low price [1,2]. After
thermal processing, lignocellulose can be converted to bio-oil in
the gasoline range with �30 wt.% production of phenolic
compounds, e.g. phenol, guaiacols and syringols. On the other
hand, lignin cleavage under mild conditions is developed and phe-
nolic monomers, e.g. phenol, alkyl-guaiacols, alkyl-syringols, and
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dimers, e.g. b-O-4, 4-O-5 ether linkage and 5–50, b-1 C–C linkage,
can be obtained [3–5]. However, the high oxygen content will
reduce the quality of the phenolic bio-oils and a deoxygenation
process is required to obtain alkane fuels with high energy content
[6]. The upgrading of bio-oils through removing the excess oxygen
atoms is most important and remains challenging.

Hydrodeoxygenation is an effective technology to remove the
oxygen and convert lignin into high energy carriers such as
cycloalkanes. Nickel [7–8], nickel sulfide [9], nickel phosphide
[10] and nickel or cobalt in conjunction with molybdenum or tung-
sten [11–12] are employed as catalysts in hydrodeoxygenation
processes. However, the intrinsic activity of these catalysts is
rather low and high temperature is required for the hydrodeoxy-
genation upgrading process. Moreover, the product contamination
by sulfur from sulfide catalysts is a serious problem to be consid-
ered. Noble metals with high aromatic hydrogenation activity are
alternative choices of hydrodeoxygenation catalysts. Palladium
[3,13–16], platinum [17–19], rhodium [20] and ruthenium
[21–22] on different supports, e.g. active carbon, metal oxides
and zeolites, have been evaluated in the hydrodeoxygenation pro-
cess. For example, Kou et al. developed a two-step process for the
degradation Birch wood and the hydrodeoxygenation of phenolic
monomers and dimers into alkanes with Pd/C and H3PO4 at
473 K [3]. Brønsted acidic ionic liquids combined with nanoparti-
cles were reported to be effective for hydrodeoxygenation by Yan
et al. [23] and further investigated by Xu et al. [24]. It appears that
remarkable hydrodeoxygenation efficiency can be achieved with
the combination of Brønsted acids and active metals. However,
the introduction of additional homogeneous Brønsted acids will
probably cause the recycling and environmental problems. To
address these issues, supported palladium nanoparticles and
heterogeneous solid acids were proposed as combination catalyst
system by Lercher et al. and remarkable activity in the
hydrodeoxygenation of lignin-derived phenolic compounds could
be achieved at 473 to 523 K [25]. Moreover, bi-functional catalysts
composed of active metals on acidic supports, e.g. Pt/H-Y [26] and
Ru/H-ZSM-5 [27], have been reported to be active for the
hydrodeoxygenation process.

Despite current achievements on the hydrodeoxygenation of
lignin-derived compounds, adequate catalysts working under mild
conditions are still challenging. With a few exceptions [28–30],
high reaction temperatures, e.g. >473 K, are required for the
hydrodeoxygenation of lignin-derived phenolic dimers, making
this process most energy-consuming and unfeasible for industrial
application. In the present study, we will focus on the hydrodeoxy-
genation of lignin-derived phenolic mono- and dimers over bi-
functional noble metals supported on acidic zeolite under mild
conditions. The effects of catalyst constitution on hydrodeoxygena-
tion activity are investigated and the hydrodeoxygenation reaction
pathways are discussed.
2. Experimental methods

2.1. Preparation of catalysts

All the catalysts were prepared by impregnating the supports
(H-Beta with Si/Al = 13.5, H-ZSM-5 with Si/Al = 12.5, H-USY with
Si/Al = 12.5, H-MOR with Si/Al = 12.0, SiO2 with surface area of
286.2 m2/g and c-Al2O3 with surface area of 278.5 m2/g) with
aqueous solution of metal salts (H2PtCl6�xH2O, PdCl2, RuCl3�xH2O
and RhCl3�xH2O). In a typical preparation process of Ru/H-Beta
(1% Ru), 10 mL RuCl3 aqueous solution was added to 1 g H-Beta
support. The impregnated sample was well mixed and then
evaporated in a rotary evaporator at constant temperature of
353 K. The as-prepared sample was carefully washed by distilled
water, dried at 353 K overnight and then reduced in 5%H2/He at
473 K for 2 h prior to being used as catalyst.

2.2. Characterization techniques

Specific surface areas and pore volumes were determined
through N2 adsorption/desorption isotherms at 77 K collected on
a Quantachrome iQ-MP gas adsorption analyzer. XRD patterns
were recorded on a Bruker D8 ADVANCE powder diffractometer
using Cu Ka radiation at a scanning rate of 4�/min. Metal loadings
were analyzed by ICP-AES (Perkin Elmer Optima 2000). Solid sam-
ples were dissolved in hot aqua regia with the addition of several
drops of HF and the excess acid in solution was removed by heat-
ing at constant temperature of 453 K before ICP analysis. TEM
images were taken on a FEI Tecnai G2 F20 electron microscope at
an acceleration voltage of 200 kV. Dispersion of noble metals was
determined by CO pulse adsorption on a chemisorption analyzer
(Chemisorb 2720, Micromeritics). Temperature-programmed des-
orption of ammonia (NH3-TPD) and temperature-programmed
reduction by hydrogen (H2-TPR) were performed on a chemisorp-
tion analyzer (Quantachrome ChemBet 3000).

Fourier transform infrared (FTIR) spectra of pyridine adsorption
were collected on the Bruker Tensor 27 spectrometer. A self-sup-
porting pellet made of the sample was placed in the flow cell
and evacuated under reduced pressure at 693 K for 4 h. After cool-
ing to room temperature, the samples were saturated with pyri-
dine vapor and then evacuated at 473 K for 30 min. Spectra were
recorded at evacuation temperature in the 4000–650 cm�1 range
by using co-addition of 32 scans. The amount of the Lewis acid
sites in samples was determined from the integral intensity of
characteristic band at ca. 1450 cm�1 using the molar extinction
coefficients of Emeis [31].

2.3. Catalytic evaluation and product analysis

The hydrodeoxygenation of various lignin-derived compounds
(AR purity, from commercial suppliers and used as provided) was
performed in a high-pressure stainless autoclave (15 mL in capa-
city) at a stirring rate of 800 rpm. After reaction, the autoclave
was cooled down in ice water and the liquid products were
collected and extracted with acetic ether for three times and then
analyzed by gas chromatography (Shimadzu GC-2010) with a
RXI-5MS column (30 m, 0.25 mm i.d., stationary phase thickness
0.25 lm). 2-isopropylphenol was used as an internal standard
for quantification. The carbon balance was better than 90% in all
cases.
3. Results and discussion

3.1. Physicochemical properties of samples

The physicochemical properties of supported catalysts are sum-
marized in Table 1. The obtained metal loadings are very close to
the designed values, indicating the high efficiency of impregnation
process. High metal dispersion of >50% is obtained for all noble
metals supported on zeolites, which should be good for catalytic
applications due to the enhanced metal accessibility. Besides,
the high surface areas (450–700 m2/g) and micropore volumes
(0.20–0.32 cm3/g) of zeolite supports are well preserved. The pore
diameter of supported Ru catalysts with similar metal loading of
ca. 0.5% is observed to be Ru/H-USY (0.80 nm) > Ru/H-Beta
(0.78 nm) > Ru/H-MOR (0.70 nm) > Ru/H-ZSM-5 (0.49 nm). Large
pore diameter is good for catalytic application especially when
dealing with bulky reaction substrate, e.g. lignin-derived phenolic
dimers.



Table 1
Physicochemical properties of samples under study.

Sample Metal loading (%)a Metal dispersion (%) Si/Ala SBET (m2/g) Pore diameter (nm)

Pt/H-Beta 0.96 57.5 14.1 587 0.76
Pd/H-Beta 0.49 53.8 14.3 595 0.77
Rh/H-Beta 0.51 58.2 13.7 579 0.75
0.5%Ru/H-Beta 0.51 63.2 13.9 602 0.78
1%Ru/H-Beta 0.98 61.3 13.7 594 0.76
2%Ru/H-Beta 1.94 50.5 14.2 562 0.71
Ru/H-ZSM-5 0.51 52.6 12.9 542 0.49
Ru/H-MOR 0.52 55.8 13.2 476 0.70
Ru/H-USY 0.51 57.4 13.4 682 0.80
Ru/SiO2 0.51 39.7 / 275 /
Ru/Al2O3 0.53 37.6 / 262 /

a Determined by ICP.
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Fig. 1. XRD patterns of H-Beta supported catalysts and supported Ru catalysts.
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For all samples, typical diffraction peaks corresponding to sup-
port materials are observed (Fig. 1), indicating the well preserva-
tion of support structure after the introduction of metal by
impregnation. Besides, no diffraction peaks are observed for metals
even after hydrogen reduction process due to the low metal load-
ing and high dispersion, as confirmed in Table 1.

The TEM images of Ru/H-Beta samples with different Ru load-
ings are shown in Fig. 2, and it is seen that ruthenium species
appear as small clusters (<4 nm) on the H-Beta supports. The
cluster size distribution clearly reveals that the average size of
ruthenium species increases slightly with increasing loading.
Typically, smallest average cluster size of 1.6 nm is observed for
0.5%Ru/H-Beta, followed by 1.7 nm for 1%Ru/H-Beta and then
2.1 nm for 2%Ru/H-Beta. These observations agree well with the
results from Ru dispersion analysis.

The ruthenium species on H-Beta support are investigated by
H2-TPR, as shown in Fig. 3. Since H-Beta is not reducible in the tem-
perature range studied, the reduction peaks observed from 300 to
500 K should due to the reduction of ruthenium species. For Ru/H-
Beta with different ruthenium loadings, similar reduction peak
centered at 423 K is observed and similar H2/Ru ratio of �2 is cal-
culated from quantitative analysis. Obviously, ruthenium species
should exist in the form of RuO2 on H-Beta, which could be reduced
to metallic ruthenium below 500 K. The temperature of
RuO2 reduction is similar to those observed for Ru/SiO2 and
Ru/SiO2–Al2O3 [32], but slightly higher than unsupported RuO2

due to the interaction between RuO2 and support.
The acidic properties of Ru zeolites are evaluated by NH3-TPD,
as shown in Fig. 4. A broad ammonia desorption peak from 373
to 673 K is observed for Ru/Al2O3 while no distinct ammonia
desorption is observed for Ru/SiO2. For Ru supported on zeolites,
two ammonia desorption peaks can be observed, i.e. a low-
temperature peak at �473 K and a high-temperature peak at
over 573 K. According to the high-temperature desorption peak,
the acidity of Ru catalysts is determined to be Ru/H-ZSM-5
(690 K) > Ru/H-Beta (610 K) > Ru/H-USY (600 K) > Ru/H-MOR
(580 K).

3.2. Hydrodeoxygenation of diphenyl ether

The catalytic performance of bi-functional supported clusters
was tested in the hydrodeoxygenation of diphenyl ether as a model
reaction. As shown in Table 2, the catalytic activity and product
selectivity are controlled by the catalysts employed. Typically,
Rh/H-Beta shows the highest activity, followed by Ru/H-Beta and
Pt/H-Beta, and then Pd/H-Beta with similar mole loading of metals.
As for the product selectivity, higher selectivity toward desired
product cyclohexane is achieved with Ru/H-Beta and Pt/H-Beta,
followed by Rh/H-Beta and then Pd/H-Beta. Ruthenium appears
to be the optimized noble metal considering its high activity and
selectivity as well as its much lower price compared to others.

We investigated the effects of supports on the hydrodeoxygena-
tion of diphenyl ether over Ru catalysts. As shown in Table 2, simi-
lar diphenyl ether conversion of ca. 70% is observed for all
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Fig. 2. TEM images and cluster size distribution of 0.5%Ru/H-Beta, 1%Ru/H-Beta and 2%Ru/H-Beta samples.
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supported Ru catalysts while the product distribution differs a lot.
It seems that the acidity of supports can change the reaction path-
way in hydrodeoxygenation process and, accordingly, influence the
product distribution. Typically, the selectivity to desired product
cyclohexane is observed to be Ru/H-ZSM-5 (73.2%) > Ru/H-
Beta (66.0%) > Ru/H-USY (51.1%) > Ru/H-MOR (34.5%) > Ru/Al2O3

(33.5%) > Ru/SiO2 (23.4%). For Ru supported on zeolites, the selec-
tivity to cyclohexane is relevant with the acidity of zeolite supports
and higher selectivity is achieved with stronger acidity (Fig. 4).
Besides, the product selectivity might also be influenced by the
pore structure of zeolite. For Ru/H-ZSM-5, although highest cyclo-
hexane selectivity is obtained, considerable amount of ether (11.1%
dicyclohexyl ether and 13.2% cyclohexyl phenyl ether) is detected.
This should be due to the fact that bulky ethers suffer from diffu-
sion hindrance though the small channels of ZSM-5 zeolite
(0.49 nm) and their further hydrodeoxygenation is therefore slow.
This problem will become more evident for the hydrodeoxygena-
tion of lignin-derived phenolic dimers over Ru/H-ZSM-5. Taking
all the factors into consideration, Ru/H-Beta should be the opti-
mized catalyst for the hydrodeoxygenation of lignin-derived
compounds.

The effects of reaction temperature on the hydrodeoxygenation
of diphenyl ether over 0.5%Ru/H-Beta catalyst are investigated, as
shown in Table 3. Reaction temperature plays an essential role in
the hydrodeoxygenation process. Typically, diphenyl ether conver-
sion after 1 h reaction increases from 17.8% to 55.4% with increas-
ing temperature from 373 to 413 K. Meanwhile, the selectivity to
hydrocarbons, i.e. cyclohexane and benzene, dramatically increas-
es from 35.5% to 96.2% (selectivity to cyclohexanol decreases from
48.2% to 3.2%). Obviously, the increasing reaction temperature can
accelerate the conversion of cyclohexanol to cyclohexane. At tem-
perature of 413 K and with bi-functional 0.5%Ru/H-Beta catalyst,
the performance in hydrodeoxygenation of diphenyl ether is better
or comparable with literature reports at much higher temperature,
e.g. 473 K, and with other catalyst systems [3,13–27], demonstrat-
ing the great advantage of our catalyst system. Moreover, no Ru
could be detected in the water phase after reaction, indicating no
Ru leaching during reaction or the leached Ru below the detection
limit.

The effects of ruthenium loadings on the of Ru/H-Beta catalyst
are investigated and shown in Table 3. With ruthenium loading
increases from 0.5% (0.049 mmol/g) to 1% (0.096 mmol/g), the
diphenyl ether conversion increases from 55.4% to 80.5% (after
reaction for 1 h). While diphenyl ether conversion decreases to
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Fig. 4. NH3-TPD profiles of as-prepared supported Ru catalysts.

Table 2
Hydrodeoxygenation of diphenyl ether over different catalysts.a

Catalyst nMe (mmol/g) Conversion (%) Selectivity (%)

Rh/H-Beta 0.047 79.6 50.5 37.7 0.8 3.0 7.9
Pt/H-Beta 0.049 64.1 67.0 27.9 1.0 1.6 2.5
Pd/H-Beta 0.046 58.9 36.1 58.0 1.4 1.5 3.0
Ru/H-Beta 0.049 70.4 66.0 30.5 0 0.8 2.7
Ru/H-ZSM-5 0.050 74.5 73.2 2.5 0 11.1 13.2
Ru/H-USY 0.049 65.8 51.1 45.1 0.4 0.7 2.9
Ru/H-MOR 0.050 73.2 34.5 45.1 0 10.6 9.8
Ru/SiO2 0.049 72.0 23.4 51.2 0 12.6 12.9
Ru/Al2O3 0.051 72.6 33.5 52.9 0 10.6 3.1

a Reaction conditions: temperature = 393 K, time = 3 h.

Table 3
Hydrodeoxygenation of diphenyl ether over Ru/H-Beta catalyst.a

Catalyst Temp. (K) nRu (mmol/g) Conv. (%) Selectivity (%)

Ru/H-Beta 373 0.049 17.8 22.7 12.8 48.2 0 6.9 9.3
Ru/H-Beta 393 0.049 26.5 29.7 16.1 44.7 0 1.6 7.9
Ru/H-Beta 413 0.049 55.4 66.8 29.4 3.2 0.2 0.2 0.2
Ru/H-Beta 413 0.096 80.5 68.3 24.3 3.1 0.2 0.7 3.4
Ru/H-Beta 413 0.191 64.3 65.5 22.7 2.9 0.3 1.1 7.5

a Reaction conditions: time = 1 h.
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64.3% with ruthenium loading further increases to 2%. The TOF val-
ues are calculated to be 168.2, 136.8 and 66.7 h�1 for 0.5%Ru/H-Be-
ta, 1%Ru/H-Beta and 2%Ru/H-Beta, respectively. Experimentally,
0.5% is the optimized ruthenium loading for Ru/H-Beta. The very
low TOF value of 2%Ru/H-Beta seems to be strange and abnormal.
Since the ruthenium cluster size (Fig. 2) and existence state (Fig. 3)
are similar for Ru/H-Beta catalysts with different ruthenium load-
ings, they are not the decisive factors for the low TOF of the 2%Ru/
H-Beta. The total density and strength of acid sites are also similar
for Ru/H-Beta catalysts with different ruthenium loadings (Fig. 4),
however, further experimental results reveal that the density of
Lewis acid sites in Ru/H-Beta dramatically decreases with increas-
ing Ru loading.
FTIR analysis with pyridine adsorption allows a clear distinction
between Brønsted and Lewis acid sites. As a good Lewis base, pyr-
idine molecules can interact with the Brønsted acid sites forming
pyridiniumions (FTIR band at ca. 1540 cm�1) and adsorb on the
surface of Lewis acid sites through their isolated electron pair on
nitrogen atoms (FTIR band at ca. 1450 cm�1). As shown in Fig. 5,
both Brønsted acid sites (60 lmol/g) and Lewis acid sites
(112 lmol/g) can be identified for H-Beta support. The impregna-
tion of ruthenium on H-Beta results in a distinct decline in the den-
sity of Lewis acid sites while the density of Brønsted acid sites is
kept nearly unchanged. Typically, the density of Lewis acid sites
decreases from 107 to 9 lmol/g with increasing ruthenium loading
from 0.5% to 2%. The synchronized decline in the Lewis acid site
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density and hydrodeoxygenation activity indicates the crucial role
of Lewis acid sites in the hydrodeoxygenation of diphenyl ether
over Ru/H-Beta catalyst.
Table 4
Rate of independent reaction step in the hydrodeoxygenation of diphenyl ether over
0.5%R/H-Beta.a

Reaction step TOF (h�1)

diphenyl ether ? benzene + phenol ? . . . 171.3
benzene ? cyclohexane 1168.2
benzene ? cyclohexaneb 125.6
phenol ? cyclohexone ? . . . 1020.3
cyclohexone ? cyclohexanol ? . . . >2000
cyclohexanol ? cyclohexane 151.1
cyclohexyl phenyl ether ? dicyclohexyl ether ? . . . 127.0

a Reaction conditions: 0.1 g 0.5%Ru/H-Beta, temperature = 413 K, time = 1 h.
3.3. Reaction pathway for the hydrodeoxygenation of diphenyl ether

The kinetic plots of diphenyl ether hydrodeoxygenation over
0.5%Ru/H-Beta catalyst at 413 K are shown in Fig. 6. Diphenyl ether
conversion increases with reaction time and >95% conversion
could be obtained after 3 h. At the early stage of hydrodeoxygena-
tion reaction (reaction time of 0.5 h), benzene, cyclohexane and
cyclohexanol are detected as major products while the selectivity
to benzene is approximately equal to the sum of cyclohexane
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and cyclohexanol. It is known that the hydrogenolysis of diphenyl
ether produces equimolar benzene and phenol, which can be fur-
ther converted to cyclohexane. The ca. 50% benzene selectivity at
the early stage of hydrodeoxygenation reveals that the hydrogeno-
lysis of diphenyl ether is much faster than the hydrogenation of
benzene. The absence of phenol and cyclohexone indicates that
the hydrogenation of phenol to cyclohexanol via cyclohexone as
intermediate is a very fast reaction, with much higher rate than
the dehydroxylation of cyclohexanol. With the extension of reac-
tion time to 2 h, the benzene selectivity dramatically decreases
to 0, while cyclohexane selectivity increases to >70%. During the
reaction process, cyclohexyl phenyl ether and dicyclohexyl ether
could be detected, indicating the existence of the direct hydrogena-
tion of diphenyl ether. Since the selectivity to cyclohexyl phenyl
ether and dicyclohexyl ether is rather low, the direct hydrogena-
tion of diphenyl ether should be a minor pathway compared with
hydrogenolysis. To verify the above assumption, the reaction rate
of independent reaction step is measured and given in Table 4. It
is seen that the hydrogenation of benzene catalyzed by Ru/H-Beta
is very fast with TOF of 1168.2 h�1. However, the presence of
diphenyl ether can dramatically reduce the activity of Ru/H-Beta
with a TOF of 125.6 h�1 probably due to the blockage of ruthenium
sites by hydroxyls and/or aromatic rings. On the basis of these
observations, the reaction pathways of aqueous phase diphenyl
ether hydrodeoxygenation over Ru/H-Beta are illustrated in
Fig. 7. The major hydrodeoxygenation route is diphenyl ether
hydrogenolysis into benzene and phenol. Benzene can be hydro-
genated to cyclohexane on ruthenium and phenol hydrogenated
to cyclohexanol via cyclohexone as intermediate. The formed
cyclohexanol can be transformed to cyclohexane through a dehy-
b In the presence of diphenyl ether.

OHO
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Fig. 7. Reaction pathways of diphenyl ether hydrodeoxygenation over 0.5%Ru/H-
Beta.
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droxyl step. The minor hydrodeoxygenation route is the direct
hydrogenation of diphenyl ether to cyclohexyl phenyl ether and
subsequent hydrogenation of cyclohexyl phenyl ether to dicyclo-
hexyl ether. The hydrogenation products, i.e. cyclohexyl phenyl
ether and dicyclohexyl ether, can undergo hydrogenolysis to cyclo-
hexane, cyclohexanol and phenol. Furthermore, the stability of
0.5%Ru/H-Beta catalyst was evaluated via recycling experiments
and no obvious decrease in diphenyl ether conversion could be
observed within 5 cycles, indicating the good stability and recycla-
bility of Ru/H-Beta catalyst.

3.4. Hydrodeoxygenation of lignin-derived phenolic monomers/dimers

The hydrodeoxygenation of lignin-derived phenolic mono-
mers and dimers is investigated with 0.5%Ru/H-Beta as optimized
catalyst and the results are shown in Table 5. Two typical mono-
mer products from the degradation of lignin, i.e. guaiacol and
eugenol, can be efficiently converted into alkanes, with substrate
conversion of >98% and selectivity to cycloalkanes of >95%
obtained after 8 h. Meanwhile, some hydrogenation products
could be observed (<5%). If 0.5%Ru/H-ZSM-5 is used as catalyst
instead of Ru/H-Beta, high substrate conversion could also be
obtained, however, considerable amount of by-product methoxy-
cyclohexanols could be observed (Table 5). Similar results have
been reported by Chen et al. in the hydrodeoxygenation of guaia-
col catalyzed by Ru/H-ZSM-5 at 413 K for 4 h. It is therefore pro-
posed that the Ru-catalyzed hydrogenation of aromatic ring is
faster than the acid-catalyzed hydrolysis of the methoxy group
[27]. The strength of acidity in Ru/H-ZSM-5 is distinctly higher
than that in Ru/H-Beta (Fig. 4), however, Ru/H-Beta shows much
higher activity for the hydrolysis of the methoxy group than Ru/
H-ZSM-5. This should be due to the presence of Lewis acid sites in
Table 5
Hydrodeoxygenation of lignin-derived phenolic monomers/dimers over 0.5%Ru/H-Beta.a

Substrate Conversion (%) Selectivity (%)

98.8

8 h 97.9
98.9

8 h b 48.6
99.9

8 h 95.4
99.8

8 h b 36.6
96.6

3 h 97.1
99.0

8 h 35.7
99.1

8 h 37.4
99.9

8 h 94.7

a Reaction condition: 2 mmol substrate, 0.2 g 0.5%Ru/H-Beta, 4 mL H2O, temperature
b With 0.5%Ru/H-ZSM-5 as catalyst.
Ru/H-Beta (Fig. 5), which greatly promotes the activation of C–O
bond catalyzed by Lewis acid sites or the cooperation of Brønst-
ed/Lewis acid sites.

b-O-4, a-O-4 and 4-O-5 linkages are three most common types
of hardwood lignin [33] and therefore, we further investigated the
hydrodeoxygenation of these representative lignin-derived pheno-
lic dimers over 0.5%Ru/H-Beta. As shown in Table 5, the diphenyl
ether (4-O-5) can be converted at 413 K with cyclohexane yield
of >93%, which is comparable with other catalyst systems, e.g.
Pd/C and H-ZSM-5 [15] and Ru/H-ZSM-5 [27], at much higher tem-
peratures (473 K or above). For the hydrodeoxygenation of benzyl
phenyl ether (a-O-4) and phenylethyl phenyl (b-O-4) over Ru/H-
Beta, >99% substrate conversion could be obtained at 413 K after
8 h. In contrast to 4-O-5, the hydrodeoxygenation of a-O-4 and
b-O-4 gives quite different product distributions. Typically, cyclo-
hexane (35.7%), methyl cyclohexane (19.9%), cyclohexylmethanol
(16.4%) and dicycloalkanes (27.6%) are detected as major products
for the conversion of a-O-4 while cyclohexane (37.4%), ethylcyclo-
hexane (24.0%), cyclohexylethanol (23.6%) and bicycloalkanes
products (14.5%) for b-O-4. The relative high percentages of cyclo-
hexylmethanol and cyclohexylethanol in the products should be
due to their slow dehydroxylation rates (9.5 and 8.8 h�1, respec-
tively, in contrast to 1020.3 h�1 for phenol). The product distribu-
tion of a-O-4 conversion is similar to that observed with ZSM-5
and Ni/ZSM-5 as catalysts at higher temperature of 523 K [34].
The product dicyclohexyl methane was proposed to be formed
via free radical reaction that dominates the thermal pyrolysis pro-
cess. The hydrodeoxygenation of mixed substrate, i.e. phenol/ben-
zyl alcohol and phenol/toluene, over Ru/H-Beta was performed and
the results are shown in Table 6. It is seen that single-ring products
cyclohexane, methyl cyclohexane, cyclohexyl methanol are formed
via hydrogenation and/or dehydroxylation, while only trace
2.1

51.4

4.6
Others

21.3 33.4 8.7

0.4 1.1 1.4

19.9 16.4 27.6

24.0 23.6 14.5
Ring-opening products

5.3

= 413 K;



Table 6
Hydrodeoxygenation of mixed substrate over 0.5%Ru/H-Beta.a

Substrate Conversion (%) Product selectivity (%)

Single-ring Double-ring

99.9 <0.2

97.8 43.3 37.7 8.1 3.1 7.6

99.9 <0.1

76.1 55.1 36.3 8.5

a Reaction condition: 1 + 1 mmol substrate, 0.1 g 0.5%Ru/H-Beta, 4 mL H2O, temperature = 413 K, time = 1 h.
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amount of double-ring products, e.g. dicyclohexyl methane, could
be detected. That is, the thermal pyrolysis is the dominating route
over hydrogenolysis and hydrolysis in the cleavage C–O–C linkages
in a-O-4.

In addition to C–O–C, C–C linkage is another important aryl-aryl
link type. The hydrodeoxygenation of 2,2-biphenol as 5–50 model
compound is also investigated (Table 5). After reaction for 8 h,
99.9% conversion and 94.7% selectivity of desired product bicyclo-
hexane are obtained. A small amount of ring-opening products are
observed (5.3%), while no products from the cracking of C–C bond
could be detected, excluding the cleavage the C–C linkage cat-
alyzed by Ru/H-Beta under our reaction conditions.
4. Conclusions

In the present study, a bifunctional Ru/H-Beta catalyst system,
namely highly dispersed RuO2 nanoclusters of <2 nm on acidic zeo-
lite H-Beta, was developed for bio-oil upgrading via the
hydrodeoxygenation of lignin-derived phenolic compounds.
Remarkable performance in the aqueous phase hydrodeoxygena-
tion under very mild conditions, i.e. at 413 K and 4 MPa H2, is
achieved, which is ascribed to the optimized Ru active centers
and the presence of both Brønsted and Lewis acid sites in zeolite
support. Moreover, the reaction pathway is studied and the hydro-
genolysis followed by hydrogenation and dehydroxylation is illus-
trated to be the dominant route.
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