文章编号: 1001-8719(2006)增刊-0196-02

新结构磷酸锌的合成与表征

SYNTHESIS AND CHARACTERIZATION OF A NOVEL ZINC PHOSPHATE

杨雅莉,章福祥,武光军,王祖鹓,关乃佳

YANG Ya-li, ZHANG Fu-xiang, WU Guang-jun, WANG Zu-yuan, GUAN Nai-jia (南开大学 化学学院 新催化材料科学研究所, 天津 300071)

(Institute of New Catalytic Materials, Department of Materials, Nankai University, Tianjin 300071, China)

摘要:在对苯二胺存在的条件下,通过水热方法得到了具有新结构的磷酸,相同条件下也得到了该材料的单晶体,并通过单晶 X 射线衍射解析其结构。新结构的磷酸锌属单斜晶系, $P2_1$ 空间群,结构组成为 Zn_3 (H_2 ())(PO_4)2,晶胞参数 M=404.07,a=0.8747(3)nm,b=0.4890(7)nm,c=1.6731(2)nm, $\beta=95.639(2)^\circ$,V=0.7122(7)nm⁴,Z=4, $D_c=3.768$ g/cm³。通过共用顶点连接的 PO_1 四面体和 ZnO_6 、 ZnO_7 (H_2 O)六面体结构单元形成了 Zn_3 (H_2 O)(PO_4)2的三维开放骨架,而整个结构也可以看作是有三元环、四元环和八元环共同构成的。

关 键 词:磷酸锌;单晶;水热方法;开放骨架

中图分类号: O614.1/.8 文献标识码: A

Abstract: A new structural zinc phosphate was prepared by hydrothermal method in the present of $NH_2(C_6H_1)NH_2$. The single crystals were also obtained and their structures were solved by single-crystal X-ray diffraction. The new structural zinc phosphate with the composition of $Zn_4(H_2O)(PO_4)_2$ belongs to monoclinic crystalline system with $P2_1(No. 4)$ space group. Crystal data: M=404.07, a=0.8747(3) nm, b=0.4890(7) nm, c=1.6731(2) nm, $\beta=95.639(2)^\circ$, V=0.7122(7) nm³, Z=4, $D_c=3.768$ g/cm³. Vertex linked PO_4 tetrahedra and ZnO_6 , $ZnO_5(H_2O)$ octahedra form the 3D open-framework of $Zn_3(H_2O)(PO_4)_2$. The whole structure was constructed by 3-, 4- and 8- membered rings.

Key words: zinc phosphate; single crystal; hydrothermal method; open framework

从 20 世纪 80 年代微孔磷酸铝的出现开始,具有多孔结构的金属磷酸盐的合成、结构及应用研究就成为了多孔材料领域的研究热点,这主要是由于金属磷酸盐具有沸石或类沸石骨架、数量多、结构多样,并且在吸附、分离、催化反应、分子识别等多方面存在巨大的潜在应用。而在众多的金属磷酸盐中,磷酸锌则是非常重要的一系列金属磷酸盐。首先,微孔磷酸锌材料的数量是最多的,目前已经报道的就有近百种;其次,磷酸锌材料具有多样的结构和丰富的化学组成[1],磷酸锌除了少数几个具有已知沸石的拓扑结构外,大多数都具有全新的结构,并且据报道目前已经得到了一系列具有超大微孔、特殊骨架连接和构成方式以及特殊孔道体系的磷酸锌[2-4],这使磷酸锌材料的合成、理化性质及性能探索受到科研工作者的广泛关注,在具有多孔结构的金属磷酸盐材料中占有非常重要的地位。在本文中,笔者采用水热合成方法,制备了一种新型的具有三维开放骨架的磷酸锌材料 $Zn_3(H_2O)(PO_4)_2$,并通过单晶 X 射线衍射进行了结构解析。

1 实验部分

1.1 合成

通过水热方法,把一定比例的醋酸锌、98%磷酸、去离子水和对苯二胺的混合物装在不锈钢反应釜中进行样品的合成。具体步骤:把去离子水分成2份,其中1份溶解醋酸锌,待醋酸锌全部溶解后加入对苯

收稿日期: 2006-08-13

基金项目: 国家自然科学基金(20233030, 20573059)、973 计划(2003CB615801)资助项目

通讯联系人: 关乃佳, E-mail: guannj@nankai. edu. cn

二胺,搅拌 30 min, 另 1 份去离子水稀释 98 %的磷酸,然后加入到上述含有锌的混合物中,电磁搅拌 2 h后,转人到反应釜中,放置在恒温干燥箱内,于 170 ℃静态晶化 6 d,得到的产物经过冷却、过滤、洗涤、干燥等步骤,成为无色透明的针状晶体,并通过粉末 XRD 初步判定为新物相。

1.2 晶体结构的测定

使用 Rigaku D/MAX 2500 型 X 射线衍射仪进行初步物相表征(CuKα, 石墨单色器, 管电压 40 kV, 管电流 100 mA);采用 Bruker IFS-88 型红外光谱仪进行 FT-IR 分析;在 Bruker Smart 1000 CCD 衍射仪上收集单晶衍射数据。

2 结果与讨论

挑选尺寸为 $0.22 \text{ mm} \times 0.16 \text{ mm} \times 0.08 \text{ mm}$ 的单晶体用于单晶结构分析,在 $2.34^{\circ} \leq 26 \leq 26.38^{\circ}$ 范围内共收集到了 3732 个衍射点,其中包含 1451 个独立衍射点,1312 个可观察点 $[I>2\sigma(I)]$ (Rint = 0.0361),强度数据经过半经验吸收校正。非氢原子坐标由直接法解出,用基于 F^2 的全矩阵最小二乘法对非氢原子进行各向异性温度因子修正。单晶结构测定结果显示, $Z_{n_3}(H_2())(PO_4)_2$ 属于单斜晶系, $P2_1/c(No.14)$ 空间群,晶胞参数 M=404.07,a=0.8747(3)nm,b=0.4890(7)nm,c=1.6731(2)nm, $a=90^{\circ}$, $\beta=95.639(2)^{\circ}$, $\gamma=90^{\circ}$,V=0.7122(7)nm³,Z=4, $D_c=3.768$ g/cm³,最终结构偏离因子 $R_1=0.0439$, $wR_2=0.1346$,(all data) $R_1=0.0481$,(all data) $wR_2=0.1397$ 。

通过单晶 X 射线衍射测定产物的分子式为 $Zn_3(H_2O)(PO_4)_2$, 其不对称结构单元中含有 14 个非氢原子,其中包括晶体学不等价的 P 原子 2 个、Zn 原子 3 个。P 原子和 Zn 原子分别以四配位[$P(1)O_4$, $P(2)O_4$]和六配位形式($Zn(1)O_6$, $Zn(2)O_6$, $Zn(3)O_5$ (H_2O))存在,其中 P-O 键键长在 $0.1500\sim0.1569$ nm, 平均键长为 0.1539 nm, Zn-O 键键长在 $0.1891\sim0.2461$ nm, 平均键长为 0.2046 nm. $Zn(1)O_6$ 、 $Zn(2)O_6$ 、 $Zn(3)O_5$ (H_2O)八面体和 $P(1)O_4$ 、 $P(2)O_4$ 四面体之间通过共用顶点的氧原子形成

 Z_{n} —O—P 氧桥键相互连接,其键角范围为 $102.5 \sim 157.5^{\circ}$; Z_{n} (1) O_{6} , Z_{n} (2) O_{6} 和 Z_{n} Z_{n

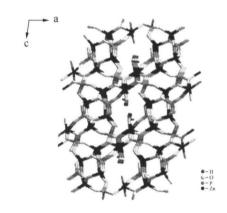


图 1 沿 b 轴方向 Zn₃(H₂O)(PO₄)₂ 骨架的透视图 Fig. 1 Perspective of the open framework of Zn₃(H₂O)(PO₄)₂ viewed down b axis

3 结 论

- (1) 通过水热方法,在含有对苯二胺的反应混合物中,成功制备了具有新的物相结构新型磷酸锌材料 $Zn_3(H_2O)(PO_4)_2$ 。
- (2) $Zn_3(H_2O)(PO_4)_2$ 具有三维的开放骨架,一维八元环孔道,整个结构可以看作是由三元环、四元环、八元环构成。

参考文献:

- [1] Rao C, Natarajan S, Choudhury A, et al. Acc Chem Res, 2001, 34: 80-87.
- [2] Yang G, Sevov S. J Am Chem Soc, 1999, 121: 8389-8390.
- [3] Neeraj S, Natarajan S, Rao C. Chem Commun, 1999, 2: 165-166.
- [4] Rodgers J, Harrison W. J Mater Chem, 2000, 10: 2853-2856.